COLLEGE ST-FRANCOIS D'ASSISE(SFA)

<u>Partie A</u>: (80 pts)

Encercler la lettre correspondant à la bonne réponse :

- Soit (U_n) une suite arithmétique définie par son premier terme: $U_0 = -4$ et r = 3 alors le 35° terme
 - a) 116
- b) 102
- c) 105
- d) 98
- 2) Un argument du nombre complexe Z tel que $Z = -8 + 8i\sqrt{3}$ est: $\frac{2\pi}{3}$ **b**) $\frac{4\pi}{3}$ **c**) $\frac{5\pi}{6}$ **d**) $\frac{7\pi}{6}$

- 3) Les racines carrées du nombre complexe Z = -5 - 12i sont:

 - a) $3+2i_{\text{et}}-3-2i_{\text{b}}$ b) $2+3i_{\text{et}}-2-3i_{\text{c}}$ c) $3-2i_{\text{et}}-3-2i_{\text{d}}$ d) $2-3i_{\text{et}}-2+3i_{\text{c}}$
- 4) Soit X une variable aléatoire numérique prenant les valeurs -3, -2, 1, 3, 4 avec les probabilités 1 1 1 1 1 respectives $\overline{5}$, $\overline{3}$, $\overline{10}$, $\overline{5}$, $\overline{6}$ alors l'espérance mathématiques de X est :
 - a) 30

- 5) Si deux nombres complexes sont tels que :

$$Z_1 = -\frac{1}{2} + \frac{\sqrt{3}}{2}i$$

 $Z_1 = -\frac{1}{2} + \frac{\sqrt{3}}{2}i$ et $Z_2 = 1 + i$ alors la forme

trigonométrique du nombre complexe Z_2 est :

$$\mathbf{a}) \frac{\sqrt{2}}{2} \left(\cos\frac{5\pi}{12} + i\sin\frac{5\pi}{12}\right) \quad \mathbf{b}) \frac{\sqrt{2}}{2} \left(\cos\frac{7\pi}{6} + i\sin\frac{7\pi}{6}\right)$$

$$\frac{\sqrt{2}}{2}(\cos\frac{7\pi}{6} + i\sin\frac{7\pi}{6})$$

$$\frac{\sqrt{2}}{2}(\cos{\frac{\pi}{24}} + i\sin{\frac{\pi}{24}})$$
 $\frac{\sqrt{2}}{2}(\cos{\frac{5\pi}{12}} - i\sin{\frac{5\pi}{12}})$

$$\frac{\sqrt{2}}{2}(\cos\frac{5\pi}{12} - i\sin\frac{5\pi}{12})$$

- 6) Le plan vectoriel E₂ est rapporté à la base
 - B(i, j); on considère <u>l'endomorphisme</u> f de E_2

défini par: $\begin{cases} f(i) = 2i - j \\ f(j) = a.i + b.j \end{cases}$

^f est une projection vectorielle de E₂ si et seulement si:

- a) a = 2 et b = -1 c) a = -1 et b = 2b) a = -2 et b = -1 d) a = -2 et b = 1

- 7) Soit (U_n) une suite arithmétique définie par son premier terme : $U_0 = 1300$ et r = 50 alors a somme $S = U_0 + U_1 + U_2 + ... + U_{20}$ vaut :
 - a) 72000
- c) 37800
- b) 37275
- **d)** 36000

8) Le tableau suivant représente la loi de probabilité d'une variable aléatoire X

$X = X_i$	-3	-2	1	3	4
$P(X = X_i)$	1_	а	1_	b	1_
	5		10		6

 $E(X) = \frac{1}{10}$ alors les réels a et respectivement pour valeurs:

- $\frac{1}{5}$ et $\frac{1}{10}$
- c) $\frac{1}{3}$ et $\frac{1}{5}$

Partie B : (120 pts)

On considère, dans l'ensemble C des nombres Complexes, le polynôme p défini

$$\forall Z \in C$$
, $P(Z) = Z^3 - (8+3i)Z^2 + (17+15i)Z - 6(1+3i)$

- a) Démontrer que l'équation P(Z) = 0 admet une racine réelle $Z_0 = a$ que l'on précisera.
- Résoudre dans C l'équation P(Z) = 0
- Une Urne contient 8 billets de 1 gourde et 7 billets de 2 gourdes. On tire simultanément 5 billets dans l'urne et on suppose que les tirages sont équiprobables. On désigne par X, la variable aléatoire numérique qui, a chaque tirage, est égale a la somme en gourdes des billets tirés.
 - Déterminer la loi de probabilité de X et Construire son diagramme en bâtons
 - Calculer l'espérance mathématique, la variance et l'écart-type de X. (30pts)
- III) Le quinzième terme d'une suite arithmétique (U_n) est -136 et son trentième terme est -241.
 - a) Calculer sa raison et son premier terme U_1
 - b) Exprimer, en fonction de n, le terme général U_n et la somme $S_n = U_1 + U_2 + ... + U_n$
 - c) Calculer S_{10} et S_{50} (30pts)
- IV) Dans l'espace vectoriel E rapporté a la B(i, j, k), On considère le <u>plan</u> <u>vectoriel</u> (P) engendré par: U = i - 2k; V = i + j - k et la droite vectorielle (D)' engendrée par : W = 3j - k
 - a) Démontrer que (D) et (P) sont supplémentaires dans E puis donner l'équation cartésienne de (P)

COLLEGE ST-FRANÇOIS D'ASSISE(SFA)

CLASSE : Philo C

- b) Définir analytiquement l'endomorphisme f, projection vectorielle de E sur (P) parallèlement a (D)
- c) En déduire l'expression analytique de l'endomorphisme g, symétrie vectorielle de E sur D' de direction P'. (30pts)

Durée 2h00 (Joyeuses Pâques)